Trim a Binary Search Tree LeetCode Solution

Last updated on February 2nd, 2025 at 06:14 am

Here, we see a Trim a Binary Search Tree LeetCode Solution. This Leetcode problem is solved using different approaches in many programming languages, such as C++, Java, JavaScript, Python, etc.

List of all LeetCode Solution

Topics

Tree

Companies

Bloomberg

Level of Question

Medium

Trim a Binary Search Tree LeetCode Solution

Trim a Binary Search Tree LeetCode Solution

1. Problem Statement

Given the root of a binary search tree and the lowest and highest boundaries as low and high, trim the tree so that all its elements lies in [low, high]. Trimming the tree should not change the relative structure of the elements that will remain in the tree (i.e., any node’s descendant should remain a descendant). It can be proven that there is a unique answer.

Return the root of the trimmed binary search tree. Note that the root may change depending on the given bounds.

Example 1:

trim1

Input: root = [1,0,2], low = 1, high = 2
Output: [1,null,2]

Example 2:

trim2

Input: root = [3,0,4,null,2,null,null,1], low = 1, high = 3
Output: [3,2,null,1]

2. Coding Pattern Used in Solution

The coding pattern used in this code is Tree Depth First Search (DFS). The algorithm traverses the binary search tree (BST) recursively in a depth-first manner to trim nodes that fall outside the range [low, high]. The traversal ensures that the tree structure is preserved while removing nodes that do not satisfy the condition.

3. Code Implementation in Different Languages

3.1 Trim a Binary Search Tree C++

class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if (!root) { 
            return root;
        }
        if (root->val >= low && root->val <= high) {
            root->left = trimBST(root->left, low, high);
            root->right = trimBST(root->right, low, high);
            return root;
        }
        if (root->val < low) {
            return trimBST(root->right, low, high);
        }
        return trimBST(root->left, low, high);
    }
};

3.2 Trim a Binary Search Tree Java

class Solution {
    public TreeNode trimBST(TreeNode root, int low, int high) {
        if (root == null) {
            return null;
        }
        if (root.val >= low && root.val <= high) {
            root.left = trimBST(root.left, low, high);
            root.right = trimBST(root.right, low, high);
        } else if (root.val < low) {
            root = trimBST(root.right, low, high);
        } else if (root.val > high) {
            root = trimBST(root.left, low, high);
        }
        return root;
    }
}

3.3 Trim a Binary Search Tree JavaScript

var trimBST = function(root, low, high) {
    if (root === null) {
        return null;
    }
    if (root.val > high) {
        return trimBST(root.left, low,high);
    }
    if (root.val < low) {
        return trimBST(root.right, low, high);
    }
    root.left = trimBST(root.left, low, high);
    root.right = trimBST(root.right, low, high);
    return root;     
};

3.4 Trim a Binary Search Tree Python

class Solution(object):
    def trimBST(self, root, low, high):
		if not root: return root
		if root.val < low: return self.trimBST(root.right, low, high)
		if root.val > high: return self.trimBST(root.left, low, high)
		root.left = self.trimBST(root.left, low, high)
		root.right = self.trimBST(root.right, low, high)
		return root

4. Time and Space Complexity

Time ComplexitySpace Complexity
C++O(N)O(H)
JavaO(N)O(H)
JavaScriptO(N)O(H)
PythonO(N)O(H)

where, N is the number of nodes in the tree and H is the height of the tree.

  • The code leverages the properties of a binary search tree (BST) to efficiently decide whether to keep or discard subtrees.
  • The recursive approach ensures that the tree structure is preserved while trimming nodes outside the range [low, high].
  • The algorithm is optimal for this problem as it avoids unnecessary traversal of subtrees that are guaranteed to be out of range.
Scroll to Top