Last updated on January 29th, 2025 at 02:21 am
Here, we see a Search in Rotated Sorted Array II LeetCode Solution. This Leetcode problem is solved using different approaches in many programming languages, such as C++, Java, JavaScript, Python, etc.
List of all LeetCode Solution
Topics
Array, Binary Search
Level of Question
Medium

Search in Rotated Sorted Array II LeetCode Solution
Table of Contents
1. Problem Statement
There is an integer array nums
sorted in non-decreasing order (not necessarily with distinct values).
Before being passed to your function, nums
is rotated at an unknown pivot index k
(0 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,4,4,5,6,6,7]
might be rotated at pivot index 5
and become [4,5,6,6,7,0,1,2,4,4]
.
Given the array nums
after the rotation and an integer target
, return true
if target
is in nums
, or false
if it is not in nums
.
You must decrease the overall operation steps as much as possible.
Example 1:
Input: nums = [2,5,6,0,0,1,2], target = 0
Output: true
Example 2:
Input: nums = [2,5,6,0,0,1,2], target = 3
Output: false
2. Coding Pattern Used in Solution
The coding pattern used in all the provided implementations is Modified Binary Search. This pattern is a variation of the standard binary search algorithm, where the search space is adjusted based on additional conditions. In this case, the array is rotated and may contain duplicates, so the algorithm modifies the binary search logic to handle these scenarios.
3. Code Implementation in Different Languages
3.1 Search in Rotated Sorted Array II C++
class Solution { public: bool search(vector<int>& nums, int target) { int l = 0, r = nums.size() - 1; while (l <= r) { while (l < r && nums[l] == nums[l + 1]) { l++; } while (l < r && nums[r] == nums[r - 1]) { r--; } int m = l + (r - l) / 2; if (nums[m] == target) { return true; } if (nums[m] > target) { if (nums[l] > nums[m] || nums[l] <= target) { r = m - 1; } else { l = m + 1; } } else { if (nums[l] <= nums[m] || nums[l] > target) { l = m + 1; } else { r = m - 1; } } } return false; } };
3.2 Search in Rotated Sorted Array II Java
class Solution { public boolean search(int[] nums, int target) { int start = 0, end = nums.length - 1, mid = -1; while(start <= end) { mid = (start + end) / 2; if (nums[mid] == target) { return true; } if (nums[mid] < nums[end] || nums[mid] < nums[start]) { if (target > nums[mid] && target <= nums[end]) { start = mid + 1; } else { end = mid - 1; } } else if (nums[mid] > nums[start] || nums[mid] > nums[end]) { if (target < nums[mid] && target >= nums[start]) { end = mid - 1; } else { start = mid + 1; } } else { end--; } } return false; } }
3.3 Search in Rotated Sorted Array II JavaScript
var search = function(nums, target) { function findPivot(low, high) { if(high - low === 1 && nums[high] < nums[low]) return high; if(high - low <= 1) return 0; const mid = Math.floor((low + high) / 2); if(nums[mid] > nums[high]) return findPivot(mid, high); if(nums[mid] < nums[low]) return findPivot(low, mid); return Math.max(findPivot(low, mid), findPivot(mid, high)); } function binarySearch(start, end) { while(start <= end) { const mid = Math.floor((start + end) / 2); if(nums[mid] === target) return true; if(nums[mid] > target) end = mid - 1; else start = mid + 1; } return false; } const minIdx = findPivot(0, nums.length-1) return binarySearch(0, minIdx-1) || binarySearch(minIdx, nums.length-1) };
3.4 Search in Rotated Sorted Array II Python
class Solution(object): def search(self, nums, target): left,right = 0,len(nums)-1 while left <= right: mid = (left+right) // 2 if nums[mid] == target: return True if nums[left] <= nums[mid]: if nums[left] == nums[mid] and mid != left: left+=1 continue if nums[left] <= target< nums[mid]: right = mid-1 else: left = mid+1 elif nums[left] > nums[mid]: if nums[mid] < target <= nums[right]: left = mid+1 else: right = mid-1 return False
4. Time and Space Complexity
Time Complexity | Space Complexity | |
C++ | O(log n) | O(1) |
Java | O(log n) | O(1) |
JavaScript | O(log n) | O(log n) |
Python | O(log n) | O(1) |
- The provided code in all languages implements a Modified Binary Search to handle rotated sorted arrays with potential duplicates.
- The algorithm efficiently narrows down the search space by determining which part of the array is sorted and whether the target lies in that part.
- The time complexity is O(log n), and the space complexity varies slightly depending on the language implementation.