Minesweeper LeetCode Solution

Last updated on February 4th, 2025 at 12:58 am

Here, we see a Minesweeper LeetCode Solution. This Leetcode problem is solved using different approaches in many programming languages, such as C++, Java, JavaScript, Python, etc.

List of all LeetCode Solution

Topics

Breadth-First Search, Depth-First Search

Companies

Amazon

Level of Question

Medium

Minesweeper LeetCode Solution

Minesweeper LeetCode Solution

1. Problem Statement

Let’s play the minesweeper game (Wikipediaonline game)!

You are given an m x n char matrix board representing the game board where:

  • 'M' represents an unrevealed mine,
  • 'E' represents an unrevealed empty square,
  • 'B' represents a revealed blank square that has no adjacent mines (i.e., above, below, left, right, and all 4 diagonals),
  • digit ('1' to '8') represents how many mines are adjacent to this revealed square, and
  • 'X' represents a revealed mine.

You are also given an integer array click where click = [clickr, clickc] represents the next click position among all the unrevealed squares ('M' or 'E').

Return the board after revealing this position according to the following rules:

  1. If a mine 'M' is revealed, then the game is over. You should change it to 'X'.
  2. If an empty square 'E' with no adjacent mines is revealed, then change it to a revealed blank 'B' and all of its adjacent unrevealed squares should be revealed recursively.
  3. If an empty square 'E' with at least one adjacent mine is revealed, then change it to a digit ('1' to '8') representing the number of adjacent mines.
  4. Return the board when no more squares will be revealed.

Example 1:

untitled

Input: board = [[“E”,”E”,”E”,”E”,”E”],[“E”,”E”,”M”,”E”,”E”],[“E”,”E”,”E”,”E”,”E”],[“E”,”E”,”E”,”E”,”E”]], click = [3,0]
Output: [[“B”,”1″,”E”,”1″,”B”],[“B”,”1″,”M”,”1″,”B”],[“B”,”1″,”1″,”1″,”B”],[“B”,”B”,”B”,”B”,”B”]]

Example 2:

untitled 2

Input: board = [[“B”,”1″,”E”,”1″,”B”],[“B”,”1″,”M”,”1″,”B”],[“B”,”1″,”1″,”1″,”B”],[“B”,”B”,”B”,”B”,”B”]], click = [1,2]
Output: [[“B”,”1″,”E”,”1″,”B”],[“B”,”1″,”X”,”1″,”B”],[“B”,”1″,”1″,”1″,”B”],[“B”,”B”,”B”,”B”,”B”]]

2. Coding Pattern Used in Solution

The coding pattern used in this problem is “Islands”. This pattern is commonly used to solve problems that involve traversing a grid (2D matrix) to explore connected components, such as finding islands, regions, or clusters. The problem involves recursively or iteratively exploring adjacent cells in a grid, which is characteristic of the “Islands” pattern.

3. Code Implementation in Different Languages

3.1 Minesweeper C++

class Solution {
public:
    int dx[8] = {-1, 0, 1, 0, -1, -1, 1, 1};
    int dy[8] = {0, 1, 0, -1, -1, 1, 1, -1};
    bool isValid(vector<vector<char>>& board, int i, int j) {
        return (i >= 0 && j >= 0 && i < board.size() && j < board[0].size());
    }
    
    int hasAdjacentMine(vector<vector<char>>& board, int i, int j) {
        int count = 0;
        for (int k=0; k<8; k++) {
            int I = i + dx[k];
            int J = j + dy[k];
            if (isValid(board, I, J) && board[I][J] == 'M')
                count++;
        }
        return count;
    }
    
    void dfs(vector<vector<char>>& board, vector<vector<bool>>& visited, int i, int j) {
        if (min(i, j) < 0 || i >= board.size() || j >= board[0].size() || visited[i][j]) return;
        visited[i][j] = true;
        if (board[i][j] == 'M') {
            board[i][j] = 'X';
            return;
        }
        if (board[i][j] == 'E') {
            int c = hasAdjacentMine(board, i, j);
            if (c == 0) {
                board[i][j] = 'B';
                for (int k=0; k<8; k++) {
                    dfs(board, visited, i+dx[k], j+dy[k]);
                }
            }
            else {
                board[i][j] = c + '0';
                return;
            }
        }
    }
    
    vector<vector<char>> updateBoard(vector<vector<char>>& board, vector<int>& click) {
        vector<vector<bool>> visited(board.size(), vector<bool>(board[0].size(), false));
        dfs(board, visited, click[0], click[1]);
        return board;
    }
};

3.2 Minesweeper Java

class Solution {
    public char[][] updateBoard(char[][] board, int[] click) {
        if (board[click[0]][click[1]] == 'M') {
            board[click[0]][click[1]] = 'X';
            return board;
        }
        reveal(board, click[0], click[1]);
        return board;
    }
    
    private void reveal(char[][] board, int i, int j) {
        if (i < 0 || j < 0 || i >= board.length || j >= board[0].length || board[i][j] != 'E')
            return;
        board[i][j] = '0';
        int[][] neighbors = {{i-1, j-1}, {i-1, j}, {i-1, j+1}, 
                             {i, j-1}, {i, j+1}, 
                             {i+1, j-1}, {i+1, j}, {i+1, j+1}};
        for (int[] neighbor : neighbors) {
            if (neighbor[0] < 0 || neighbor[1] < 0 || neighbor[0] >= board.length || neighbor[1] >= board[0].length)
                continue;
            if (board[neighbor[0]][neighbor[1]] == 'M')
                board[i][j] ++;
        }
        if (board[i][j] != '0')
            return;
        board[i][j] = 'B';
        for (int[] neighbor : neighbors)
            reveal(board, neighbor[0], neighbor[1]);
    }
}

3.3 Minesweeper JavaScript

var updateBoard = function(board, click) {
  const rows = board.length;
  const cols = board[0].length;
  dfs(click[0], click[1]);
  return board;
  function dfs(i, j) {
    if (!board[i][j]) return;
    if (board[i][j] === 'M') {
      board[i][j] = 'X';
      return;
    }
    if (board[i][j] !== 'E') return;
    const mines = checkForMine(i, j);
    if (mines) {
      board[i][j] = mines.toString();
      return;
    } else {
      board[i][j] = 'B';
      for (let x = Math.max(i - 1, 0); x < Math.min(i + 2, rows); x++) {
        for (let y = Math.max(j - 1, 0); y < Math.min(j + 2, cols); y++) {
          dfs(x, y);
        }
      }
    }
  }

  function checkForMine(x, y) {
    let mines = 0;
    for (let i = Math.max(x - 1, 0); i < Math.min(x + 2, rows); i++) {
      for (let j = Math.max(y - 1, 0); j < Math.min(y + 2, cols); j++) {
        if (board[i][j] === 'M') mines++;
      }
    }
    return mines;
  }
}

3.4 Minesweeper Python

class Solution(object):
    def updateBoard(self, board, click):
        def adjacent_mines(i, j):
            mines = 0
            for x, y in directions:
                if 0 <= i + x < M and 0 <= j + y < N and board[i + x][j + y] == "M":
                    mines += 1
            return mines
        def dfs(i, j):
            mines = adjacent_mines(i, j)
            if mines:
                board[i][j] = str(mines)
                return board
            board[i][j] = "B"
            for x, y in directions:
                if 0 <= i + x < M and 0 <= j + y < N and board[i + x][j + y] == "E":
                    dfs(i + x, j + y)
            return board
        if not board: return board
        M = len(board)
        N = len(board[0])
        directions = [(0, 1), (1, 0), (0, -1), (-1, 0), (1,1), (1,-1), (-1,1), (-1,-1)]
        if board[click[0]][click[1]] == "M":
            board[click[0]][click[1]] = "X"
            return board
        if board[click[0]][click[1]] == "E":
            return dfs(click[0], click[1])

4. Time and Space Complexity

Time ComplexitySpace Complexity
C++O(M * N)O(M * N)
JavaO(M * N)O(M * N)
JavaScriptO(M * N)O(M * N)
PythonO(M * N)O(M * N)
  • All implementations use DFS to explore the grid.
  • The C++ implementation uses an explicit visited matrix, which slightly increases memory usage compared to other languages.
  • The JavaJavaScript, and Python implementations rely on the state of the board itself to track visited cells, avoiding the need for an additional visited matrix.
  • The time complexity is the same across all implementations because they all potentially visit every cell in the grid once.
Scroll to Top