Last updated on January 5th, 2025 at 11:57 pm
Here, we see the Maximum Width of Binary Tree LeetCode Solution. This Leetcode problem is solved using different approaches in many programming languages, such as C++, Java, JavaScript, Python, etc.
List of all LeetCode Solution
Topics
Tree
Companies
Amazon
Level of Question
Medium
Maximum Width of Binary Tree LeetCode Solution
Table of Contents
1. Problem Statement
Given the root
of a binary tree, return the maximum width of the given tree.
The maximum width of a tree is the maximum width among all levels.
The width of one level is defined as the length between the end-nodes (the leftmost and rightmost non-null nodes), where the null nodes between the end-nodes that would be present in a complete binary tree extending down to that level are also counted into the length calculation.
It is guaranteed that the answer will in the range of a 32-bit signed integer.
Example 1:
Input: root = [1,3,2,5,3,null,9]
Output: 4
Explanation: The maximum width exists in the third level with length 4 (5,3,null,9).
Example 2:
Input: root = [1,3,2,5,null,null,9,6,null,7]
Output: 7
Explanation: The maximum width exists in the fourth level with length 7 (6,null,null,null,null,null,7).
Example 3:
Input: root = [1,3,2,5]
Output: 2
Explanation: The maximum width exists in the second level with length 2 (3,2).
2. Coding Pattern Used in Solution
The coding pattern used in all the provided implementations is Tree Breadth-First Search (BFS) for the C++, Java, and Python codes, and Tree Depth-First Search (DFS) for the JavaScript code.
- Tree Breadth-First Search (BFS): The C++, Java, and Python implementations use a queue to traverse the binary tree level by level, keeping track of the indices of nodes to calculate the width of the binary tree at each level.
- Tree Depth-First Search (DFS): The JavaScript implementation uses recursion to traverse the tree depth-first, keeping track of the minimum position at each level and calculating the width of the binary tree.
3. Code Implementation in Different Languages
3.1 Maximum Width of Binary Tree C++
class Solution { public: int widthOfBinaryTree(TreeNode* root) { if (root == NULL) return 0; int max_width = 1; queue<pair<TreeNode*, int>> q; q.push({root, 0}); while (!q.empty()) { int level_size = q.size(); int start_index = q.front().second; int end_index = q.back().second; max_width = max(max_width, end_index - start_index + 1); for (int i = 0; i < level_size; ++i) { auto node_index_pair = q.front(); TreeNode* node = node_index_pair.first; int node_index = node_index_pair.second - start_index; q.pop(); if (node->left != nullptr) { q.push({node->left, 2LL * node_index + 1}); } if (node->right != nullptr) { q.push({node->right, 2LL * node_index + 2}); } } } return max_width; } };
3.2 Maximum Width of Binary Tree Java
class Solution { public int widthOfBinaryTree(TreeNode root) { if (root == null) return 0; Queue<Pair<TreeNode, Integer>> queue = new LinkedList<>(); queue.add(new Pair<>(root, 0)); int maxWidth = 0; while (!queue.isEmpty()) { int levelLength = queue.size(); int levelStart = queue.peek().getValue(); int index = 0; for (int i = 0; i < levelLength; i++) { Pair<TreeNode, Integer> pair = queue.poll(); TreeNode node = pair.getKey(); index = pair.getValue(); if (node.left != null) { queue.add(new Pair<>(node.left, 2*index)); } if (node.right != null) { queue.add(new Pair<>(node.right, 2*index+1)); } } maxWidth = Math.max(maxWidth, index - levelStart + 1); } return maxWidth; } }
3.3 Maximum Width of Binary Tree JavaScript
var widthOfBinaryTree = function(root) { const minPos = [0]; let maxWidth = 0; callDFS(root, 0, 0); return maxWidth; function callDFS(node, level, pos) { if(!node) return; if(minPos[level] === undefined) minPos.push(pos); const diff = pos - minPos[level]; maxWidth = Math.max(maxWidth, diff+1); callDFS(node.left, level+1, diff*2); callDFS(node.right, level+1, diff*2+1); } };
3.4 Maximum Width of Binary Tree Python
class Solution(object): def widthOfBinaryTree(self, root): if not root: return 0 queue = deque([(root, 0)]) max_width = 0 while queue: level_length = len(queue) _, level_start = queue[0] for i in range(level_length): node, index = queue.popleft() if node.left: queue.append((node.left, 2*index)) if node.right: queue.append((node.right, 2*index+1)) max_width = max(max_width, index - level_start + 1) return max_width
4. Time and Space Complexity
Time Complexity | Space Complexity | |
C++ | O(n) | O(n) |
Java | O(n) | O(n) |
JavaScript | O(n) | O(h) |
Python | O(n) | O(n) |
where, H is the height of the tree.