# Longest Increasing Subsequence LeetCode Solution

Here, We see Longest Increasing Subsequence LeetCode Solution. This Leetcode problem is done in many programming languages like C++, Java, JavaScript, Python, etc. with different approaches.

# List of all LeetCode Solution

## Problem Statement

Given an integer array nums, return the length of the longest strictly increasing subsequence.

Example 1:
Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.

Example 2:
Input: nums = [0,1,0,3,2,3]
Output: 4

Example 3:
Input: nums = [7,7,7,7,7,7,7]
Output: 1

## Longest Increasing Subsequence Leetcode Solution C++

``````class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> res;
for(int i=0; i<nums.size(); i++) {
auto it = std::lower_bound(res.begin(), res.end(), nums[i]);
if(it==res.end()) res.push_back(nums[i]);
else *it = nums[i];
}
return res.size();
}
};```Code language: PHP (php)```

## Longest Increasing Subsequence Leetcode Solution Java

``````public class Solution {
public int lengthOfLIS(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int n = nums.length;
int[] dp = new int[n];
Arrays.fill(dp, 1);
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
int maxLength = Arrays.stream(dp).max().orElse(0);
return maxLength;
}
}```Code language: PHP (php)```

## Longest Increasing Subsequence Solution JavaScript

``````var lengthOfLIS = function(nums) {
if (!nums || nums.length === 0) {
return 0;
}
const n = nums.length;
const dp = new Array(n).fill(1);
for (let i = 1; i < n; ++i) {
for (let j = 0; j < i; ++j) {
if (nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
return Math.max(...dp);
};```Code language: JavaScript (javascript)```

## Longest Increasing Subsequence Solution Python

``````class Solution(object):
def lengthOfLIS(self, nums):
if not nums:
return 0
n = len(nums)
dp = [1] * n
for i in range(1, n):
for j in range(i):
if nums[i] > nums[j]:
dp[i] = max(dp[i], dp[j] + 1)
return max(dp)``````
Scroll to Top