Last updated on October 10th, 2024 at 12:28 am
Here, We see Jump Game LeetCode Solution. This Leetcode problem is done in many programming languages like C++, Java, JavaScript, Python, etc. with different approaches.
List of all LeetCode Solution
Topics
Array, Greedy
Companies
Microsoft
Level of Question
Medium
Jump Game LeetCode Solution
Table of Contents
Problem Statement
You are given an integer array nums
. You are initially positioned at the array’s first index, and each element in the array represents your maximum jump length at that position.
Return true
if you can reach the last index, or false
otherwise.
Example 1: Input: nums = [2,3,1,1,4] Output: true Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index. Example 2: Input: nums = [3,2,1,0,4] Output: false Explanation: You will always arrive at index 3 no matter what. Its maximum jump length is 0, which makes it impossible to reach the last index.
1. Jump Game Leetcode Solution C++
class Solution { public: bool canJump(vector<int>& nums) { int i, minjump = 0; for(i = nums.size()-2; i >= 0; i--){ minjump++; if(nums[i] >= minjump) minjump = 0; } if(minjump == 0) return true; else return false; } };
2. Jump Game Leetcode Solution Java
class Solution { public boolean canJump(int[] nums) { if(nums.length < 2) return true; for(int curr = nums.length-2; curr>=0;curr--){ if(nums[curr] == 0){ int neededJumps = 1; while(neededJumps > nums[curr]){ neededJumps++; curr--; if(curr < 0) return false; } } } return true; } }
3. Jump Game Leetcode Solution JavaScript
var canJump = function(nums) { let idx = 0; let max = 0; let target = nums.length - 1; while(idx < nums.length) { max = Math.max(max, idx + nums[idx]); if (max >= target) { return true; } if (max <= idx && nums[idx] === 0) { return false; } idx++; } return false; };
4. Jump Game Leetcode Solution Python
class Solution(object): def canJump(self, nums): max_reach, n = 0, len(nums) for i, x in enumerate(nums): if max_reach < i: return False if max_reach >= n - 1: return True max_reach = max(max_reach, i + x)