Count Primes LeetCode Solution

Here, We see Count Primes LeetCode Solution. This Leetcode problem is done in many programming languages like C++, Java, JavaScript, Python, etc. with different approaches.

List of all LeetCode Solution

Count Primes LeetCode Solution

Count Primes LeetCode Solution

Problem Statement

Given an integer n, return the number of prime numbers that are strictly less than n.

Example 1:
Input: n = 10
Output: 4
Explanation: There are 4 prime numbers less than 10, they are 2, 3, 5, 7.

Example 2:
Input: n = 0
Output: 0

Example 3:
Input: n = 1
Output: 0

Count Primes LeetCode Solution C++

class Solution {
public:
	int countPrimes(int n) {
		vector<bool> prime(n + 1, true);
		prime[0] = false;
		prime[1] = false;
		for (int i = 2; i * i <= n; i++) {
			if (prime[i]) {
				for (int j = i * i; j <= n; j += i) {
					prime[j] = false;
				}
			}
		}
		int primeCount = 0;
		for (int i = 2; i < n; i++) {
			if (prime[i]) {
				primeCount++;
			}
		}
		return primeCount;
	}
};Code language: PHP (php)

Count Primes LeetCode Solution Java

class Solution {
    public int countPrimes(int n) {
        boolean[] seen = new boolean[n];
        int ans = 0;
        for (int num = 2; num < n; num++) {
            if (seen[num]) continue;
            ans += 1;
            for (long mult = (long)num * num; mult < n; mult += num)
                seen[(int)mult] = true;
        }
        return ans;
    }
}Code language: PHP (php)

Count Primes Solution JavaScript

var countPrimes = function(n) {
    let seen = new Uint8Array(n), ans = 0
    for (let num = 2; num < n; num++) {
        if (seen[num]) continue
        ans++
        for (let mult = num * num; mult < n; mult += num)
            seen[mult] = 1
    }
    return ans
};Code language: JavaScript (javascript)

Count Primes Solution Python

class Solution(object):
    def countPrimes(self, n):
        seen, ans = [0] * n, 0
        for num in range(2, n):
            if seen[num]: continue
            ans += 1
            seen[num*num:n:num] = [1] * ((n - 1) // num - num + 1)
        return ans
Scroll to Top