Convert BST to Greater Tree LeetCode Solution

Last updated on January 5th, 2025 at 11:55 pm

Here, we see a Convert BST to Greater Tree LeetCode Solution. This Leetcode problem is solved using different approaches in many programming languages, such as C++, Java, JavaScript, Python, etc.

List of all LeetCode Solution

Topics

Tree

Companies

Amazon

Level of Question

Medium

Convert BST to Greater Tree LeetCode Solution

Convert BST to Greater Tree LeetCode Solution

1. Problem Statement

Given the root of a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the original BST is changed to the original key plus the sum of all keys greater than the original key in BST.

As a reminder, a binary search tree is a tree that satisfies these constraints:

  • The left subtree of a node contains only nodes with keys less than the node’s key.
  • The right subtree of a node contains only nodes with keys greater than the node’s key.
  • Both the left and right subtrees must also be binary search trees.

Example 1:

tree

Input: root = [4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
Output: [30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

Example 2:
Input: root = [0,null,1]
Output: [1,null,1]

2. Coding Pattern Used in Solution

The coding pattern used in the provided code is “Tree Depth First Search (DFS)”. Specifically, it uses a Reverse Inorder Traversal (right -> root -> left) to traverse the binary search tree (BST). This traversal ensures that nodes are visited in descending order of their values, which is essential for converting the BST into a Greater Tree.

3. Code Implementation in Different Languages

3.1 Convert BST to Greater Tree C++

class Solution {
public:
    TreeNode* convertBST(TreeNode* root) {
        int num = 0;
        solve(root, num);
        return root;        
    }

    void solve(TreeNode *root, int &num)
    {
        if(root == NULL)
            return;
        solve(root->right, num);
        root->val = num + root->val;
        num = root->val;
        solve(root->left, num);
    }
};

3.2 Convert BST to Greater Tree Java

class Solution {
    int sum = 0;
    public TreeNode convertBST(TreeNode root) {
        if(root==null){
            return root;
        }
        reverseInorder(root);
        return root;
    }
    private void reverseInorder(TreeNode root){
        if(root==null){
            return;
        }
        reverseInorder(root.right);
        root.val = root.val + sum;
        sum = root.val;
        reverseInorder(root.left);
        return;
    }
}

3.3 Convert BST to Greater Tree JavaScript

var convertBST = function(root) {
    let sum = 0, prev = 0;
    function rec(root){
        if(root){
            rec(root.right);
            sum += root.val;
            root.val += prev;
            prev = sum;
            rec(root.left);
        }
    }
    rec(root);
    return root;
}

3.4 Convert BST to Greater Tree Python

class Solution(object):
    def convertBST(self, root):
        def dfs(node):
            if node:
                dfs(node.right)
                node.val += dfs.greater_sum
                dfs.greater_sum = node.val
                dfs(node.left)
        dfs.greater_sum = 0
        dfs(root)
        return root

4. Time and Space Complexity

Time ComplexitySpace Complexity
C++O(n)O(h)
JavaO(n)O(h)
JavaScriptO(n)O(h)
PythonO(n)O(h)

where, h is the height of the tree.

Scroll to Top