Last updated on January 10th, 2025 at 05:04 am
Here, we see a 01 Matrix LeetCode Solution. This Leetcode problem is solved using different approaches in many programming languages, such as C++, Java, JavaScript, Python, etc.
List of all LeetCode Solution
Topics
Tree
Companies
Facebook, Google
Level of Question
Medium
01 Matrix LeetCode Solution
Table of Contents
1. Problem Statement
Given an m x n binary matrix mat, return the distance of the nearest 0 for each cell. The distance between two adjacent cells is 1.
Example 1:
Input: mat = [[0,0,0],[0,1,0],[0,0,0]]
Output: [[0,0,0],[0,1,0],[0,0,0]]
Example 2:
Input: mat = [[0,0,0],[0,1,0],[1,1,1]]
Output: [[0,0,0],[0,1,0],[1,2,1]]
2. Coding Pattern Used in Solution
The coding pattern used in this code is “Matrix Breadth-First Search (BFS)”. This pattern is commonly used to traverse a grid or matrix level by level, starting from a set of initial points (in this case, all cells with value 0
) and expanding outward to update neighboring cells.
However, since this problem involves a 2D grid rather than a tree, it is more appropriate to classify it as Matrix BFS.
3. Code Implementation in Different Languages
3.1 01 Matrix C++
class Solution { public: vector<vector<int>> updateMatrix(vector<vector<int>>& mat) { int rows = mat.size(); int cols = mat[0].size(); vector<pair<int, int>> directions = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; queue<pair<int, int>> q; for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { if (mat[i][j] == 0) { q.push({i, j}); } else { mat[i][j] = INT_MAX; } } } while (!q.empty()) { pair<int, int> cell = q.front(); q.pop(); int row = cell.first; int col = cell.second; for (pair<int, int> direction : directions) { int newRow = row + direction.first; int newCol = col + direction.second; if (newRow >= 0 && newRow < rows && newCol >= 0 && newCol < cols && mat[newRow][newCol] > mat[row][col] + 1) { mat[newRow][newCol] = mat[row][col] + 1; q.push({newRow, newCol}); } } } return mat; } };
3.2 01 Matrix Java
class Solution { public int[][] updateMatrix(int[][] mat) { int rows = mat.length; int cols = mat[0].length; int[][] directions = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; Queue<int[]> queue = new ArrayDeque<>(); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { if (mat[i][j] == 0) { queue.add(new int[]{i, j}); } else { mat[i][j] = Integer.MAX_VALUE; } } } while (!queue.isEmpty()) { int[] cell = queue.poll(); int row = cell[0]; int col = cell[1]; for (int[] direction : directions) { int newRow = row + direction[0]; int newCol = col + direction[1]; if (newRow >= 0 && newRow < rows && newCol >= 0 && newCol < cols && mat[newRow][newCol] > mat[row][col] + 1) { mat[newRow][newCol] = mat[row][col] + 1; queue.add(new int[]{newRow, newCol}); } } } return mat; } }
3.3 01 Matrix JavaScript
var updateMatrix = function(mat) { const rows = mat.length; const cols = mat[0].length; const directions = [[0, 1], [0, -1], [1, 0], [-1, 0]]; const queue = []; for (let i = 0; i < rows; i++) { for (let j = 0; j < cols; j++) { if (mat[i][j] === 0) { queue.push([i, j]); } else { mat[i][j] = Infinity; } } } while (queue.length > 0) { const [row, col] = queue.shift(); for (const [dr, dc] of directions) { const new_row = row + dr; const new_col = col + dc; if (new_row >= 0 && new_row < rows && new_col >= 0 && new_col < cols && mat[new_row][new_col] > mat[row][col] + 1) { mat[new_row][new_col] = mat[row][col] + 1; queue.push([new_row, new_col]); } } } return mat; };
3.4 01 Matrix Python
class Solution(object): def updateMatrix(self, mat): rows, cols = len(mat), len(mat[0]) directions = [(0, 1), (0, -1), (1, 0), (-1, 0)] queue = deque() for i in range(rows): for j in range(cols): if mat[i][j] == 0: queue.append((i, j)) else: mat[i][j] = float('inf') while queue: row, col = queue.popleft() for dr, dc in directions: new_row, new_col = row + dr, col + dc if 0 <= new_row < rows and 0 <= new_col < cols and mat[new_row][new_col] > mat[row][col] + 1: mat[new_row][new_col] = mat[row][col] + 1 queue.append((new_row, new_col)) return mat
4. Time and Space Complexity
Time Complexity | Space Complexity | |
C++ | O(m * n) | O(m * n) |
Java | O(m * n) | O(m * n) |
JavaScript | O(m * n) | O(m * n) |
Python | O(m * n) | O(m * n) |
- The code uses the Matrix BFS pattern to calculate the shortest distance from each cell to the nearest
0
. - It initializes the matrix and queue, then performs a BFS traversal to update distances.
- The time complexity is O(m * n), and the space complexity is also O(m * n) for all implementations.